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Approximate similarity search 

 Approximate similarity search overcomes problems of exact 
similarity search using traditional access methods 

 Moderate improvement of performance with respect to sequential 
scan 

 Dimensionality curse 

 Similarity search returns mathematically precise result sets 

 Similarity is subjective so, in some cases, also approximate result 
sets satisfy the user 

 Approximate similarity search processes query faster at the 
price of imprecision in the returned result sets 

 Useful for instance in interactive systems 

 Similarity search is an iterative process where temporary results are 
used to create a new query 

 Improvements up to two orders of magnitude 
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Approximate similarity search 

 Approximation strategies 

 

 Relaxed pruning conditions 

 Data regions overlapping the query regions can be discarded 

depending on the specific strategy 

 

 Early termination of the search algorithm 

 Search algorithm might stop before all regions have been 

accessed 
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Approximate Similarity Search 

1. relative error approximation (pruning condition) 

 Range and k-NN search queries 

2. good fraction approximation 

3. small chance improvement approximation 

4. proximity-based approximation 

5. PAC nearest neighbor searching 

6. performance trials 
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Relative error approximation 

 Let oN be the nearest neighbour of q. If 

 

 

 

 then oA is the (1+e)-approximate nearest neighbor 

of q 

 This can be generalized to the k-th nearest neighbor 
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Relative error approximation 

 Exact pruning strategy: 
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Relative error approximation 

 Approximate pruning strategy: 
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Approximate Similarity Search 

1. relative error approximation (pruning condition) 

 Range and k-NN search queries 

2. good fraction approximation (stop condition) 

 K-NN search queries 

3. small chance improvement approximation 

4. proximity-based approximation 

5. PAC nearest neighbor searching 

6. performance trials 
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Good fraction approximation 

 The k-NN algorithm determines the final result by 

reducing distances of current result set 

 

 When the current result set belongs to a specific 

fraction of the objects closest to the query, the 

approximate algorithm stops 

 Example: Stop when current result set belongs to the 10% 

of the objects closest to the query 
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Good fraction approximation 

 For this strategy we use the distance distribution 
defined as 

 

 The distance distribution Fq(x) specifies what is the 
probability that the distance of a random object o 
from q is smaller than x 

 

 It is easy to see that Fq (x) gives, in probabilistic 
terms, the fraction of the database corresponding to 
the set of objects whose distance from q is smaller 
than x 

 xqdxFq  ),(Pr)( o
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Good fraction approximation 
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Good fraction approximation 

 When Fq(d(ok,q)) < r all objects of the current result 

set belong to the fraction r of the dataset 

ok 

q 
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Good fraction approximation 

 Fq(x) is difficult to be handled since we need to 

compute it for all possible queries 

 It was proven that the overall distance distribution 

F(x) defined as follows 

 

 

can be used in practice, instead of Fq(x), since they 

have statistically the same behaviour. 

 F(x) can be easily estimated as a discrete function 

and it can be easily maintained in main memory 

 xdxF  ),(Pr)( 21 oo
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Approximate Similarity Search 

1. relative error approximation (pruning condition) 

 Range and k-NN search queries 

2. good fraction approximation (stop condition) 

 K-NN search queries 

3. small chance improvement approximation (stop c.) 

 K-NN search queries 

4. proximity-based approximation 

5. PAC nearest neighbor searching 

6. performance trials 



P. Zezula, G. Amato, V. Dohnal, M. Batko: 

Similarity Search: The Metric Space Approach Part I, Chapter 1 16 

Small chance improvement 

approximation 
 The M-Tree’s k-NN algorithm determines the final 

result by improving the current result set 

 Each step of the algorithm the temporary result is 

improved and the distance of the k-th element 

decreases 

 When the improvement of the temporary result set 

slows down, the algorithms can stop 
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Small chance improvement 

approximation 
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Small chance improvement 

approximation 
 Function f (x) is not known a priori. 

 

 A regression curve j (x), which approximate f (x), 

is computed using the least square method while 

the algorithm proceeds 

 

 Through the derivative of j (x) it is possible to 

decide when the algorithm has to stop  
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Small chance improvement 

approximation 
 The regression curve has the following form 

 

 

     where c1 and c2 are such that  
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Regression curves 
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Approximate Similarity Search 

1. relative error approximation (pruning condition) 

 Range and k-NN search queries 

2. good fraction approximation (stop condition) 

 K-NN search queries 

3. small chance improvement approximation (stop c.) 

 K-NN search queries 

4. proximity-based approximation (pruning cond.) 

 Range and k-NN search queries 

5. PAC nearest neighbor searching 

6. performance trials 



P. Zezula, G. Amato, V. Dohnal, M. Batko: 

Similarity Search: The Metric Space Approach Part I, Chapter 1 22 

Proximity-based approximation 

 Regions whose probability of containing qualifying 

objects is below a certain threshold are pruned even 

if they overlap the query region 

 Proximity between regions is defined as the probability 

that a randomly chosen object appears in both the regions. 

 

 This resulted in an increase of performance of two 

orders of magnitude both for range queries and 

nearest neighbour queries 
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Proximity-based approximation 
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Approximate Similarity Search 

1. relative error approximation (pruning condition) 

 Range and k-NN search queries 

2. good fraction approximation (stop condition) 

 K-NN search queries 

3. small chance improvement approximation (stop c.) 

 K-NN search queries 

4. proximity-based approximation (pruning cond.) 

 Range and k-NN search queries 

5. PAC nearest neighbor searching (pruning & stop) 

 1-NN search queries 

6. performance trials 
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PAC nearest neighbour searching 

 It uses the same time a relaxed branching 

condition and a stop condition 

 The relaxed branching condition is the same used for the 

relative error approximation to find  

an (1+e)-approximate-nearest neighbor 

 In addition it halts prematurely when the probability that we 

have found the (1+e)-approximate-nearest neighbor is 

above the threshold d 

 It can only be used for 1-NN search queries 
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PAC nearest neighbour searching 

 Let us suppose that then nearest neighbour found 
so far is oA 

 Let eact be the actual error on distance of oA 

 

 

 

 The algorithm stops if 

 

 

 The above probability is obtained by computing the 
distribution of the distance of the nearest neighbor. 
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PAC nearest neighbour searching 

 Distribution of the distance of the nearest neighbor 

in X (of cardinality n) with respect to q: 

 

 Given that 

 

 

 

 The algorithm halts when 
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Approximate Similarity Search 

1. relative error approximation (pruning condition) 

 Range and k-NN search queries 

2. good fraction approximation (stop condition) 

 K-NN search queries 

3. small chance improvement approximation (stop c.) 

 K-NN search queries 

4. proximity-based approximation (pruning cond.) 

 Range and k-NN search queries 

5. PAC nearest neighbor searching (pruning & stop) 

 1-NN search queries 

6. performance trials 
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Comparisons tests 

 Tests on a dataset of 11,000 objects 

 Objects are vectors of 45 dimensions 

 

 We compared the five approximation approaches 

 Range queries tested on the methods: 

 Relative error 

 Proximity 

 Nearest-neighbors queries tested on all methods 
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Comparisons: range queries 
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Comparisons: range queries 

Proximity
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Comparisons NN queries 
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Comparisons NN queries 

Good fraction
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Comparisons NN queries 

Small chance improvement
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Comparisons NN queries 

Proximity
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Comparisons NN queries 
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Conclusions: Approximate similarity 

search in metric spaces 
 These techniques for approximate similarity search 

can be applied to generic metric spaces 

 Vector spaces are a special case  of metric space. 

 High accuracy of approximate results are generally 

obtained with high improvement of efficiency 

 Best performance obtained with the good fraction 

approximation methods 

 The proximity based is a bit worse than good fraction 

approximation but can be used for range queries and k-NN 

queries. 


