SIMILARITY SEARCH The Metric Space Approach

Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, Michal Batko

Table of Contents

Part I: Metric searching in a nutshell

- Foundations of metric space searching
- Survey of exiting approaches

Part II: Metric searching in large collections

- Centralized index structures
- Approximate similarity search
- Parallel and distributed indexes

Approximate similarity search

- Approximate similarity search overcomes problems of exact similarity search using traditional access methods
 - Moderate improvement of performance with respect to sequential scan
 - Dimensionality curse
- Similarity search returns mathematically precise result sets
 - Similarity is subjective so, in some cases, also approximate result sets satisfy the user
- Approximate similarity search processes query faster at the price of imprecision in the returned result sets
 - Useful for instance in interactive systems
 - Similarity search is an iterative process where temporary results are used to create a new query
- Improvements up to two orders of magnitude

Approximate similarity search

Approximation strategies

Relaxed pruning conditions

 Data regions overlapping the query regions can be discarded depending on the specific strategy

Early termination of the search algorithm

 Search algorithm might stop before all regions have been accessed

Approximate Similarity Search

1. relative error approximation (pruning condition)

- Range and k-NN search queries
- 2. good fraction approximation
- 3. small chance improvement approximation
- 4. proximity-based approximation
- 5. PAC nearest neighbor searching
- 6. performance trials

Relative error approximation

Let o^N be the nearest neighbour of q. If

$$\frac{d(o^A, q)}{d(o^N, q)} \le 1 + \varepsilon$$

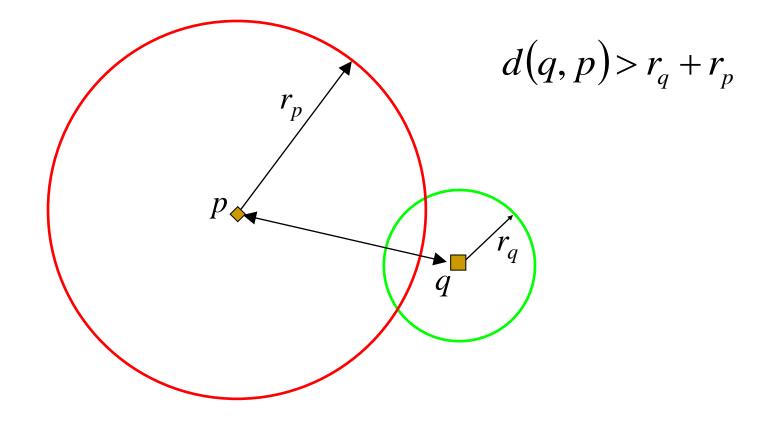
then o^A is the $(1+\varepsilon)$ -approximate nearest neighbor of q

This can be generalized to the k-th nearest neighbor

$$\frac{d(o_k^A, q)}{d(o_k^N, q)} \le 1 + \varepsilon$$

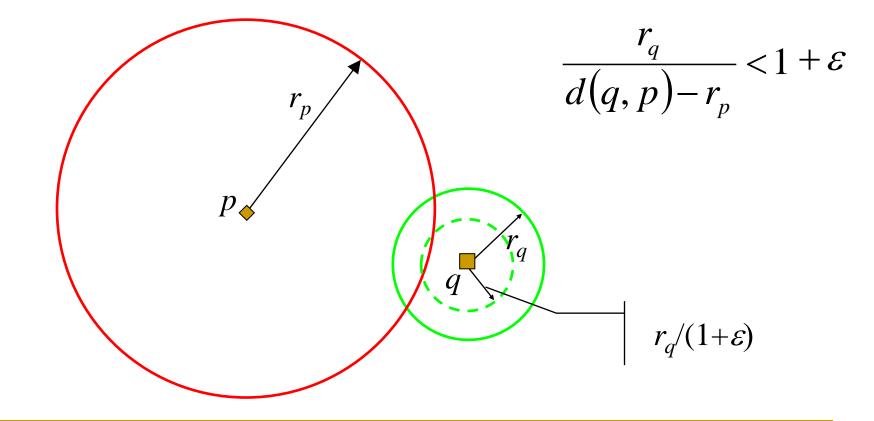
Relative error approximation

Exact pruning strategy:



Relative error approximation

Approximate pruning strategy:

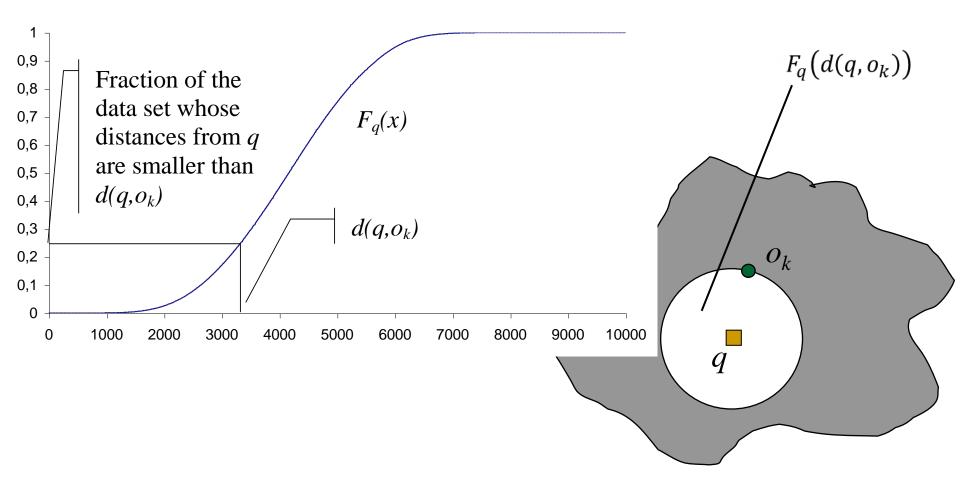


Approximate Similarity Search

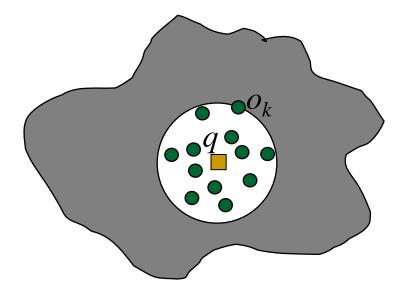
- 1. relative error approximation (pruning condition)
 - Range and k-NN search queries
- 2. good fraction approximation (stop condition)
 - K-NN search queries
- 3. small chance improvement approximation
- 4. proximity-based approximation
- 5. PAC nearest neighbor searching
- 6. performance trials

- The k-NN algorithm determines the final result by reducing distances of current result set
- When the current result set belongs to a specific fraction of the objects closest to the query, the approximate algorithm stops
 - Example: Stop when current result set belongs to the 10% of the objects closest to the query

- For this strategy we use the distance distribution defined as $F_q(x) = \Pr(d(o,q) \le x)$
- The distance distribution F_q(x) specifies what is the probability that the distance of a random object of from q is smaller than x
- It is easy to see that F_q(x) gives, in probabilistic terms, the fraction of the database corresponding to the set of objects whose distance from q is smaller than x



• When $F_q(d(o_k,q)) < \rho$ all objects of the current result set belong to the fraction ρ of the dataset



- *F_q(x)* is difficult to be handled since we need to compute it for all possible queries
- It was proven that the overall distance distribution
 F(x) defined as follows

$$F(x) = \Pr(d(\boldsymbol{o}_1, \boldsymbol{o}_2) \le x)$$

can be used in practice, instead of $F_q(x)$, since they have statistically the same behaviour.

 F(x) can be easily estimated as a discrete function and it can be easily maintained in main memory

Approximate Similarity Search

- 1. relative error approximation (pruning condition)
 - Range and k-NN search queries
- 2. good fraction approximation (stop condition)
 - K-NN search queries
- 3. small chance improvement approximation (stop c.)
 - K-NN search queries
- 4. proximity-based approximation
- 5. PAC nearest neighbor searching
- 6. performance trials

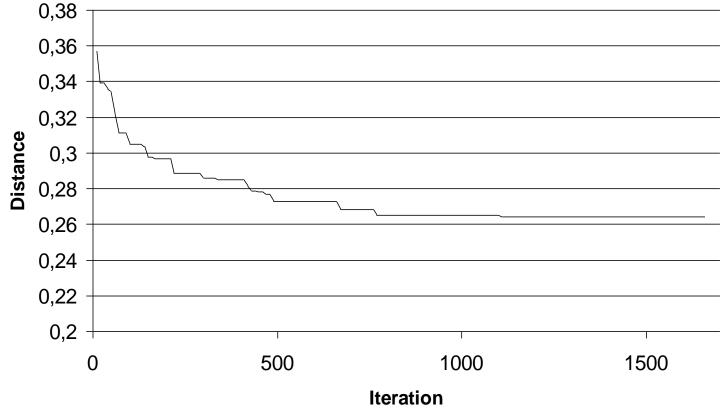
Small chance improvement

approximation

- The M-Tree's k-NN algorithm determines the final result by improving the current result set
- Each step of the algorithm the temporary result is improved and the distance of the k-th element decreases
- When the improvement of the temporary result set slows down, the algorithms can stop

Small chance improvement approximation

 $f(x) : \longrightarrow d(q, o_k^A)$



Small chance improvement approximation

- Function f(x) is not known a priori.
- A regression curve φ(x), which approximate f(x), is computed using the least square method while the algorithm proceeds
- Through the derivative of $\varphi(x)$ it is possible to decide when the algorithm has to stop

Small chance improvement

approximation

The regression curve has the following form

$$\varphi(x) = c_1 \varphi_1(x) + c_2$$

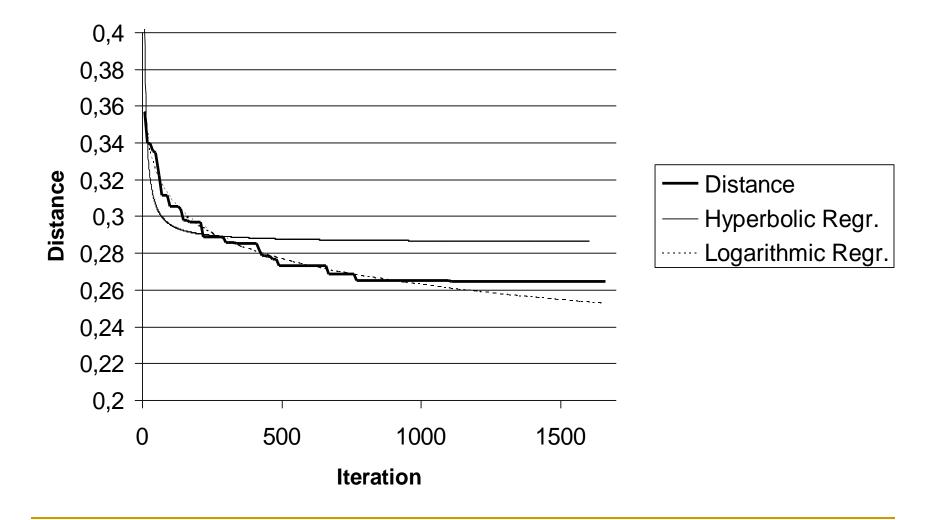
where c_1 and c_2 are such that

$$\sum_{i=0}^{j} (c_1 \varphi_1(i) + c_2 - f(i))^2$$

is minimum

We have used both $\varphi_1(x) = ln(x)$ and $\varphi_1(x) = 1/x$

Regression curves



Approximate Similarity Search

- 1. relative error approximation (pruning condition)
 - Range and k-NN search queries
- 2. good fraction approximation (stop condition)
 - K-NN search queries
- 3. small chance improvement approximation (stop c.)
 - K-NN search queries

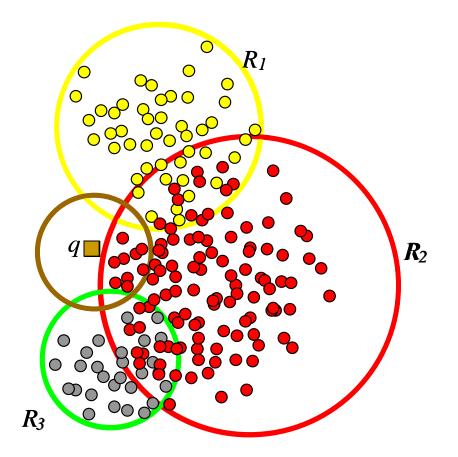
4. proximity-based approximation (pruning cond.)

- Range and k-NN search queries
- 5. PAC nearest neighbor searching
- 6. performance trials

Proximity-based approximation

- Regions whose probability of containing qualifying objects is below a certain threshold are pruned even if they overlap the query region
 - Proximity between regions is defined as the probability that a randomly chosen object appears in both the regions.
- This resulted in an increase of performance of two orders of magnitude both for range queries and nearest neighbour queries

Proximity-based approximation



Approximate Similarity Search

- 1. relative error approximation (pruning condition)
 - Range and k-NN search queries
- 2. good fraction approximation (stop condition)
 - K-NN search queries
- 3. small chance improvement approximation (stop c.)
 - K-NN search queries
- 4. proximity-based approximation (pruning cond.)
 - Range and k-NN search queries

5. PAC nearest neighbor searching (pruning & stop)

- 1-NN search queries
- 6. performance trials

PAC nearest neighbour searching

- It uses the same time a relaxed branching condition and a stop condition
 - The relaxed branching condition is the same used for the relative error approximation to find an (1+ε)-approximate-nearest neighbor
 - In addition it halts prematurely when the probability that we have found the $(1+\varepsilon)$ -approximate-nearest neighbor is above the threshold δ
 - It can only be used for 1-NN search queries

PAC nearest neighbour searching

- Let us suppose that then nearest neighbour found so far is o^A
- Let ε_{act} be the actual error on distance of o^A

$$\varepsilon_{act} = \frac{d(o^A, q)}{d(o^N, q)} - 1$$

The algorithm stops if

$$\Pr\{\varepsilon_{act} \ge \varepsilon\} \le \delta$$

• The above probability is obtained by computing the *distribution of the distance of the nearest neighbor.*

PAC nearest neighbour searching

 Distribution of the distance of the nearest neighbor in X (of cardinality n) with respect to q:

$$G_q(x) = \Pr\{\exists o \in X : d(q, o) \le x\} = 1 - (1 - F_q(x))^n$$

Given that

$$\Pr\{\varepsilon_{act} \ge \varepsilon\} = \Pr\{\exists o \in X : d(q, o^A) / d(q, o) - 1 \ge \varepsilon\} = \\= \Pr\{\exists o \in X : d(q, o) \le d(q, o^A) / (1 + \varepsilon)\} = G_q(d(q, o^A) / (1 + \varepsilon))$$

The algorithm halts when

$$G_q \left(d(q, o^A) / (1 + \varepsilon) \right) \leq \delta$$

Approximate Similarity Search

- 1. relative error approximation (pruning condition)
 - Range and k-NN search queries
- 2. good fraction approximation (stop condition)
 - K-NN search queries
- 3. small chance improvement approximation (stop c.)
 - K-NN search queries
- 4. proximity-based approximation (pruning cond.)
 - Range and k-NN search queries
- 5. PAC nearest neighbor searching (pruning & stop)
 - 1-NN search queries

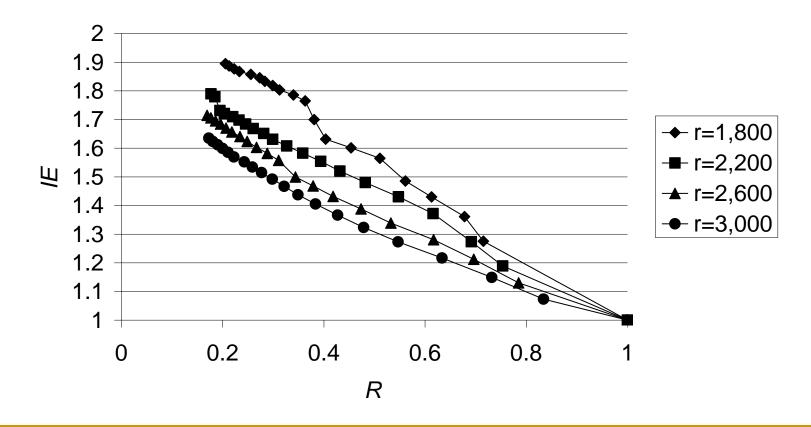
6. performance trials

Comparisons tests

- Tests on a dataset of 11,000 objects
 - Objects are vectors of 45 dimensions
- We compared the five approximation approaches
 - Range queries tested on the methods:
 - Relative error
 - Proximity
 - Nearest-neighbors queries tested on all methods

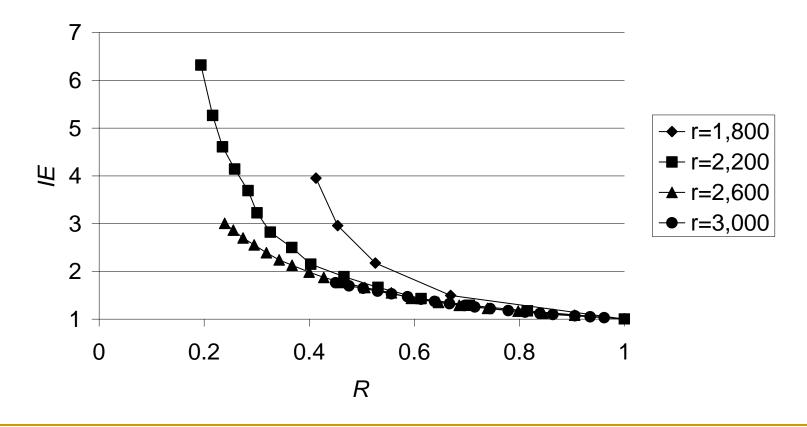
Comparisons: range queries

Relative error

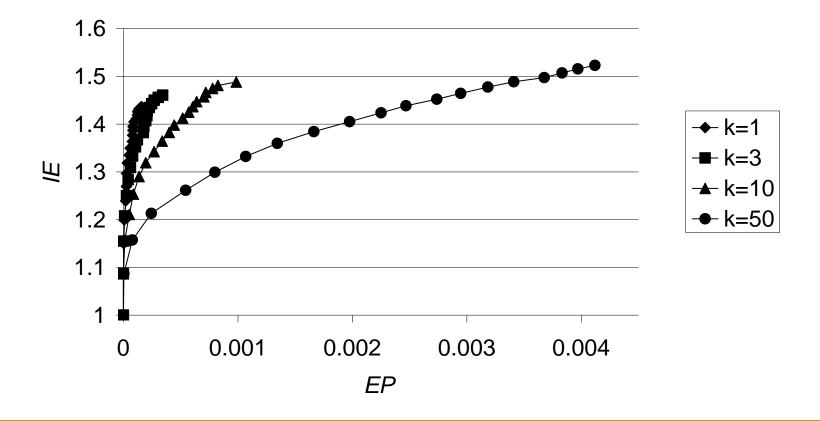


Comparisons: range queries

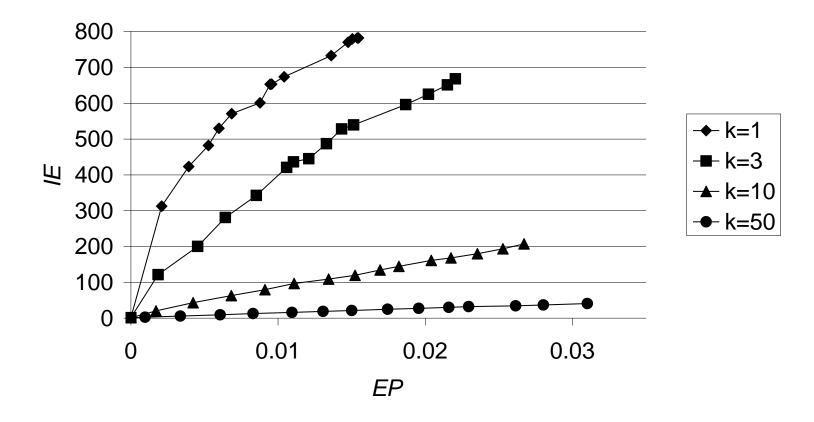
Proximity



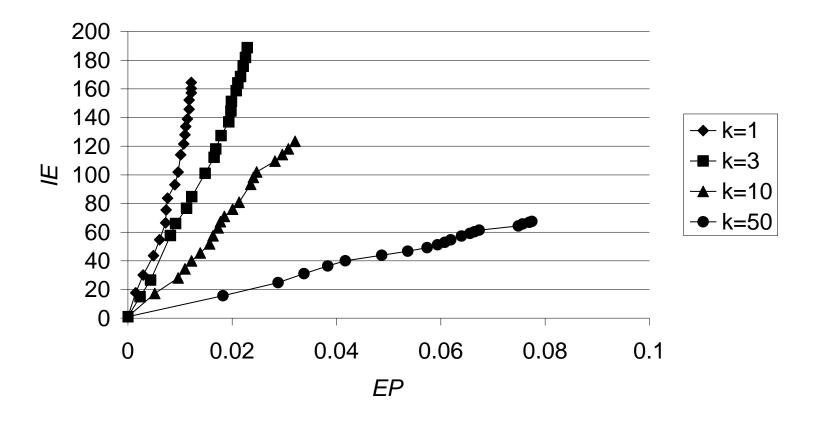
Relative error



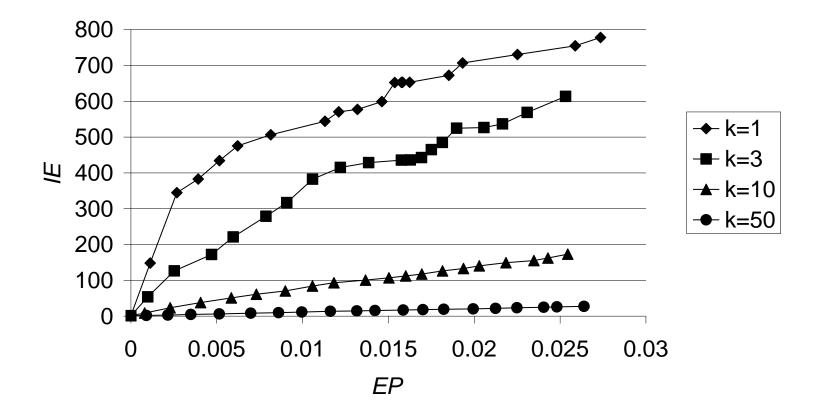
Good fraction

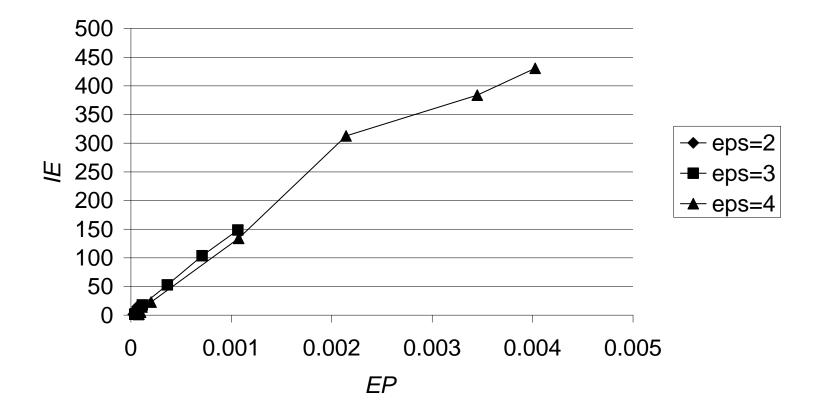


Small chance improvement



Proximity





PAC

Conclusions: Approximate similarity search in metric spaces

- These techniques for approximate similarity search can be applied to generic metric spaces
 - Vector spaces are a special case of metric space.
- High accuracy of approximate results are generally obtained with high improvement of efficiency
 - Best performance obtained with the good fraction approximation methods
 - The proximity based is a bit worse than good fraction approximation but can be used for range queries and *k*-NN queries.